Indian Statistical Institute B. Math. Hons. III Year Semestral Examination 2002-2003 (Backpaper) Optimization

Max. Marks: 100

Instructor: S. Ramasubramanian

- 1. Using the simplex algorithm (writing down the tableau at each stage) solve: Minimize $2x_1 3x_2 + x_3$ subject to $x_1 + 3x_2 = 6$, $x_1 + 2x_2 + x_3 = 8$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$. [20]
- 2. If the modified costs $\bar{c} \ge 0$ at a basic feasible solution $x^{(0)}$ of an LPS, show that $x^{(0)}$ is optimal. [15]
- 3. Show that the following are equivalent: (a) There exists a solution to $Ax \le b$; (b) $A^T y = 0, y \ge 0$ imply $b^T y \ge 0$. [20]
- 4. Describe briefly the main steps of Karmarkar's algorithm to solve a Karmarkar standard form linear program. [25]
- 5. Using Lagrangean method, find the maximum and minimum of (x^2-y^2) subject to the constraint $x^2 + y^2 = 1$. [20]